In order to meet the urgent needs for the application of thermoplastic composite structures in aircraft manufacturing and other fields, the impact resistance and damage tolerance of continuous carbon fiber reinforced thermoplastic composite laminates (CCFRTP) are investigated by high-velocity impact (HVI) and compression after impact (CAI) experiments in this paper. The impact experiment results show that the ballistic response of laminates under small-angle conventional impact is similar, and the impact resistance of laminates under large-angle oblique impact is significantly improved. The failure mechanism of laminates under high-velocity impact is revealed by analyzing the impact process of the projectile, the energy absorption level, the failure morphology and internal damage degree of laminates comprehensively. It is clear that the impact angle and velocity of the projectile will significantly affect the coupling form of the failure mechanism and lead to differentiated results. The results of in-plane compression experiment of laminates with impact damage show that the bearing capacity of laminates is significantly weakened by high velocity impact damage, and the residual strength of laminates is directly determined by the mode and degree of impact damage. In particular, through the analysis of the energy absorption mechanism, a trend prediction model of ballistic limit value with impact angle is established, and the influence of high-velocity impact damage on the residual strength of laminates is revealed. This study provides a better understanding of the mechanical response of thermoplastic composite structures to high-velocity impact loads.
Pour en savoir plus : Experimental investigation of high-velocity impact response and compression after impact behavior of continuous carbon fiber thermoplastic composites